Technical Note

Creating and
Customizing REP++
Typed Instances

Author: R&D Department
Publication date: May 3, 2006
Revised: September 2006
Revised: December 2006
Revised: May 2010

=> CONSYST

‘ Development

© 2010 Consyst SQL Inc. All rights reserved.



Technical Note

Creating and Customizing REP++
Typed Instances

Overview

REP++ provides a library of meta-objects used to represent different types of data. A meta-
object is a generic object that can stand for different object types according to the metadata.
A concrete object is an object that can represent only one entity of the system.

A typed instance is a wrapper object that encapsulates a meta-object, transforming it into a
concrete object. It contains the values of the object but delegates all the work to the meta-
object. Typed instances are defined by subclassing REP++ objects. They can be generated
automatically using the REP++Typed Instance Wizard. These generated classes can then
be customized.

This document focuses on the way the REP++ typed instances are created and customized.

Note: code samples are given in Visual Basic®.

Subclassing the REP++ objects

REP++ provides a mechanism to subclass the different objects in its hierarchy. Subclassing
allows the user to customize these objects by adding methods and properties or by overriding
the basic methods to change the default behaviour of the object.

This subclassing mechanism is implemented using the class factory design pattern. The class
factory allows the creation of the different custom objects. To use this mechanism, you should
define your REP++ subclass object, define a class factory and register it in the REP++
Application object. Once registered, the class factory becomes responsible for creating the
REP++ objects, and the REP++ Application will delegate the task of creating new instances
to this class. For more details on subclassing REP++ objects, please refer to the technical note
Subclassing and Customizing REP++ Objects.

Using the REP++ typed instance factory

REP++ class library defines a built-in class factory, TypedInstanceFactory. This class is a
factory for the RowsetTree and Rowset objects. The typed instances are subclasses that use
the REP++ subclassing mechanism to define a concrete object with typed properties. These
typed instances can be generated using the REP++Typed Instances Wizard (see below).

The TypedInstanceFactory class implements the IObjFactory interface and defines
methods for the registration of the subclasses for the RowsetTree and Rowset objects. Each
RowsetTreeDef and RowsetDef can be associated with a different subclass manually or
declaratively using a custom attribute. The AddRowsetTreeDef and AddRowsetDef
methods allow the manual registration of subclasses, while the RegisterAll methods allow the
declarative registration of subclasses.

¢ AddRowsetTreeDef(rowsetTreeDef As RowsetTreeDef, type As Type). Registers type as
the type of RowsetTree to create from the rowsetTreeDef parameter.

Creating and Customizing REP++ Typed Instances o 1



Technical Note

o AddRowsetDef(rowsetDef As RowsetDef, type As Type). Registers type as the type of the
Rowset to create from the rowsetDef parameter.

¢ RegisterAll(assembly As System.Reflection.Assembly). Registers each typed instance
class defined in an assembly as the type of the object to create for the RowsetTreeDef or
RowsetDef object represented by this typed instance. A typed instance class is identified
by the TypedInstanceClass attribute. This attribute holds two parameters. The first
parameter defines the name of the RowsetTreeDef or RowsetDef attached to the typed
instance. The second parameter represents the priority of the typed instance class. It is
used when more than one typed instance class is defined for the same RowsetTreeDef or
RowsetDef. In this case, the class having the highest priority will be registered.

''!' <summary>

'''" Typed Instance of RowsetTree CLIENT
"' </summary>

<RepPP.TypedInstanceClass ("CLIENT", 100)>
Public MustInherit Class BaseRTCCLIENT

Inherits RepPP.TypedRowsetTreeBase

End Class

o RegisterAll(OnlyMarked As Boolean). Registers each typed instance class defined in all
the assemblies of the project as the type of the object to create for the RowsetTreeDef
the RowsetDef object represented by this typed instance. Calling the method with the
parameter OnlyMarked as true finds the typed instances only in the marked assembilies.
An assembly is marked as an assembly that contains typed instances when it has the
AssemblyIncludeTypedInstances attribute.

<Assembly: RepPP.AssemblyIncludeTypes>

Generating typed instances

To generate a typed instance class, you can use the REP++Typed Instances Wizard. This
wizard allows you to generate typed instances for RowsetDef or RowsetTreeDef objetcs. When
you generate a typed instance for a RowsetTreeDef, a typed instance is automatically
generated for each RowsetDef of this RowsetTreeDef. Here is an example of a generated
RowsetTreeDef typed instance and the typed instance of its root RowsetDef.

' Rept+ Generated file. Do not modify

Imports System
"' <summary>

''"'" Typed Instance of RowseTree CLIENT

'Y </summary>

<RepPP.TypedInstanceClass ("CLIENT", 100)>

Public MustInherit Class BaseRTCCLIENT
Inherits RepPP.TypedRowsetTreeBase

mmary>

''"'" Class constructor.
"' </summary>
''"'" <param name="pobj"> Reference to the internal object</param>
Public Sub New(pobj As IntPtr)

MyBase .New (pob7j)
End Sub
'Y <summary>
'vY Create: Create a new instance.
'Y</ summary>

'"' <param name="app"> Rep++ application object</param>

Creating and Customizing REP++ Typed Instances o 2



Technical Note

End

' Rep++

Imports

""" <returns>

''"' New instance

""" </returns>

Public Shared Function Create (app As RepPP.Application) As RTCCLIENT
Return CType (app.RowsetTreeDefs ("CLIENT") .RowsetTrees.Add (), RTCCLIENT)

End Function

<summary>

''"'" Create: Create a new instance of the specified type.
'Y</ summary>
'"' <param name="app"> Rep++ application object</param>

<param name="typeWrapper"> Type of the wrapper class to create</param>
<returns>
''"' New instance
</returns>
Public Shared Function Create (app As RepPP.Application,
typeWrapper As System.Type) As RTCCCLIENT
Dim rowsetTreeRetVal As RepPP.RowsetTree

Dim rowsetTreeDef As RepPP.RowsetTreeDef
Dim typeOld As System.Type
Dim typedInstFact As RepPP.TypedInstanceFactory

rowsetTreeDef = app.RowsetTreeDefs ("CLIENT")
typedInstFact = CType (app.GetObjFactory (GetType (RepPP.RowsetTree)),
RepPP.TypedInstanceFactory)

typeOld = typedInstFact.GetTypeAssociateWithRowsetTreeDef (rowsetTreeDef)
typedInstFact.AddRowsetTreeDef (rowsetTreeDef, typeWrapper)
Try
ciRetVal = rowsetTreeDef.RowsetTrees.Add ()
Finally
typedInstFact.AddRowsetTreeDef (rowsetTreeDef, typeOld)
End Try

Return CType (rowsetTreeRetVal, RTCCLIENT)
End Function
"' <summary>
''"'" Gets the wrapper for the instance of rowset CLIENT
'Y</ summary>
Public ReadOnly Property rsCLIENT As RCCLIENT
Get
Return (CType (RootRowset, RCCLIENT))
End Get
End Property

<sumﬂary>
''"'" Gets the wrapper for the instance of rowset ADDRESS
</summary>
Public ReadOnly Property rsADDRESS As RCADDRESS

Get

Return (CType (GetCurrentRowset (RowsetTreeDef.FindNode ("ADDRESS") ) ,
RCADDRESS) )

End Get

End Property

<sumﬂary>
''"'" Gets the wrapper for the instance of rowset PHONE
'Y</ summary>
Public ReadOnly Property rsPHONE As RCPHONE

Get

Return (CType (GetCurrentRowset (RowsetTreeDef.FindNode ("PHONE") ),
RCPHONE) )

End Get
End Property
Class ' class BaseRTCLIENT

Generated file. Do not modify
System

<summary>

Creating and Customizing REP++ Typed Instances e 3



Technical Note

''"'" Typed Instance of rowset CLIENT

'Y< /summary>

<RepPP.TypedInstanceClass ("CLIENT", 100)>

Public MustInherit Class RCCLIENT -
Inherits RepPP.TypedRowsetBase

(]

v

v

v

<Sumﬂary>

Class constructor.

</summary>

<param name="pobj"> Reference to the internal object</param>

Public Sub New(pobj As IntPtr)

v

MyBase .New (pob7j,

New string() { _
"CLIENTCODE",
"CLIENTFIRSTNAME",
"CLIENTLASTNAME",
"CLIENTTYPE",
"CLIENTSALESTODATE",
"CIECODE",
"CIENAME",
"CREATIONDATE",
"MODIFICATIONDATE",
"DESCRIPTION"

})

Sub

<summary>

Create: Create a new instance.
</summary>

<param name="app"> Rep++ application object</param>
<returns>

New instance

</returns>

Public Shared Function Create (app As RepPP.Application) As RCCLIENT

Return CType (app.RowsetDefs ("CLIENT") .Rowsets.Create (RepPP.RowsetType.sdHorizontal),

RCCLIENT)
Function
<Sumﬂary>
Create: Create a new instance of the specified type.
</summary>
<param name="app"> Rep++ application object</param>

<param name="type"> Type of the wrapper class to create</param>
<returns>

New instance

</returns>

Protected Shared Function Create (ByVal app As RepPP.Application, type As Type)

As RCCLIENT

Dim rowsetRetVal As RepPP.Rowset
Dim rowsetDef As RepPP.RowsetDef
Dim typeOld As Type

Dim typedInstFact As RepPP.TypedInstanceFactory

rowsetDef = app.RowsetDefs ("CLIENT")
typedInstFact = CType (app.GetObjFactory (GetType (RepPP.Rowset) ),
RepPP.TypedInstanceFactory)
typeOld = typedInstFact.GetTypeAssociateWithRowsetDef (rowsetDef)
typedInstFact.AddRowsetDef (rowsetDef, type)
Try
rowsetRetVal = grp.Rowsets.Create (RepPP.RowsetType.sdHorizontal)
Finally
typedInstFact.AddRowsetDef (rowsetDef, typeOld)
End Try

Return CType (rowsetRetVal, RCCLIENT)

End Function

v

v

v

<summary>
Client Code
</summary>

Public ReadOnly Property fldCLIENTCODE As RepPP.Field

Get
Return (CType (Fields ("CLIENTCODE"), RepPP.Field))

Creating and Customizing REP++ Typed Instances



Technical Note

End Get
End Property

"' <summary>

First Name

</summary>

Public ReadOnly Property fldCLIENTFIRSTNAME As RepPP.Field
Get

Return (CType (Fields ("CLIENTFIRSTNAME"), RepPP.Field))

End Get

End Property

"' <summary>

Last Name

'Y </summary>
Public ReadOnly Property fldCLIENTLASTNAME As RepPP.Field
Get
Return (CType (Fields ("CLIENTLASTNAME"), RepPP.Field))
End Get
End Property

End Class ' class GCCLIENT

Defining your custom typed instance class

Your custom typed instance class should inherit from the generated typed instance. You can
register this new class manually or declaratively by specifying a priority greater than 100 for
the TypedInstanceClassAttribute attribute. When you subclass a RowsetDef typed
instance, the new class will be used by all RowsetTrees that include this RowsetDef. If you
want to subclass a RowsetDef typed instance for a specific RowsetTreeDef, you should define a
new class that inherits from the generated RowsetTreeDef typed instance.

Defining a custom typed instance for the CLIENT RowsetDef

1. Define a new class that inherits from the generated typed instance for the CLIENT
RowsetDef.

2. Add a constructor to this class: the constructor should have a single parameter of type
integer.

3. Set the priority of this class to 200.

' <summary>
''"'" Custom typed instance of rowset CLIENT
' </summary>
<RepPP.TypedInstanceClass ("CLIENT", 200)>
Public Class MyRCClient

Inherits Internal.BaseRCCLIENT

""" <summary>

''"'" Class constructor.

' </summary>

''"'" <param name="pobj"> Reference to the internal object</param>

Public Sub New (ByVal pobj As IntPtr)
MyBase .New (pobj)
End Sub
End Class

Defining a custom typed instance for the CLIENT RowsetDef only when it is used in
the CLIENT RowsetTreeDef

1. Define a new class that inherits from the generated typed instance for the CLIENT
RowsetTreeDef.

Creating and Customizing REP++ Typed Instances o5



Technical Note

2. Add a constructor to this class.
3. Set the priority of this class to 200.

'Y <summary>

''"'" Custom typed instance for the RowsetTree CLIENT
'Y </summary>
<RepPP.TypedInstanceClass ("CLIENT", 200)>
Public Class MyRTClient

Inherits Internal.BaseRTCCLIENT

"' <summary>
Class constructor.
</summary>
''"'" <param name="pobj"> Reference to the internal object</param>
Public Sub New (ByVal pobj As IntPtr)

MyBase .New (pob7j)
End Sub

End Class

Deciding at runtime which wrapper class to create

In the CLIENT contact program, suppose that you want to define a ClientCompany class or a
ClientPerson class, depending if the client is a company or a person. These two classes are
subclasses of the generated RowsetTreeDef typed instance class. To be able to decide at
runtime which wrapper class to create, the following method is generated in the client typed
instance:

Create a new instance of the specified type.

Rep++ application object</param>
Type of the wrapper class to create</param>

''"'" New instance
''"'" </returns>
Public Shared Function Create (app As RepPP.Application,
typeWrapper As System.Type) As RTCCCLIENT
Dim rowsetTreeRetVal As RepPP.RowsetTree

Dim rowsetTreeDef As RepPP.RowsetTreeDef
Dim typeOld As System.Type
Dim typedInstFact As RepPP.TypedInstanceFactory

rowsetTreeDef = app.RowsetTreeDefs ("CLIENT")
typedInstFact = CType (app.GetObjFactory (GetType (RepPP.RowsetTree)),
RepPP.TypedInstanceFactory)

typeOld = typedInstFact.GetTypeAssociateWithRowsetTreeDef (rowsetTreeDef)
typedInstFact.AddRowsetTreeDef (rowsetTreeDef, typeWrapper)
Try
ciRetVal = rowsetTreeDef.RowsetTrees.Add ()
Finally
typedInstFact.AddRowsetTreeDef (rowsetTreeDef, typeOld)
End Try

Return CType (rowsetTreeRetVal, RTCCLIENT)
End Function

In this function, the typed instance associated with the CLIENT RowsetTreeDef is saved. The
type for the new wrapper class is then registered, and the RowsetTree created. Finally, the old
type is restored.

The following example shows you how to create an object for the wrapper class
ClientPerson:

Dim person As ClientPerson

Creating and Customizing REP++ Typed Instances o 6



Technical Note

person = CType (RTCLIENT.Create (app), ClientPerson)

Creating and Customizing REP++ Typed Instances



