
Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 1

Technical Note 101

Implementing an auto-refresh

choice list

Overview

You may want, in your application, for an end user to choose an item from one list, then have a

second list adapt dynamically its content to the value chosen in the first list, without reloading a

page. For instance, the list of classes offered depend on the selected faculty or department, and

the list of company departments may vary according to the selected company.

Rep++ provides an auto-refresh feature that is easily associated with a choice list in your

application. The feature is implemented through a user-defined attribute available for SPA.

This article describes how to incorporate an auto-refresh choice list whose content depends on

the value of another choice list.1

1 The products and software cited in this document are registered trademarks, trademarks or trade names of their respective holders.

Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 2

Implementing an auto-refresh choice

list

To illustrate this feature, you will include two lists in your main Rowset, Companies and

Departments. Each list is built using a SQL command, but the list of departments will depend on

the value chosen in the Companies list. The auto-refresh is implemented using a specially

designed user-defined attribute, but you can also implement it programmatically.

Sample system

A sample system designed to demonstrate this capability, TECHNOTE101, is included with the

Rep++ installation. The information is found in 4 tables, TN101_CLIENT, TN101_COMPANY,

TN101_ DEPARTMENT and TN101_COMPANYDEPARTMENT. The tables contain the following

columns:

Company table
Ciecode Ciename

Department table
Depcode Depname

CompanyDepartment table
Ciecode Depcode

Client table
Clientcode ClientFirstname Clientlastname Clienttype Ciecode Depcode Clientsalestodate ...

The functionality will be tested in a single-page application (SPA).

In summary, you will:

1. Create the technote's database tables and import the system.

2. Import the user-defined attributes that implement the auto-refresh feature.

Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 3

3. Set up the Ciecode and Depcode choice lists in Rep++ studio.

4. Create a new SPA application in Visual Studio® using the Rep++ wizard.

5. Test your application.

Prerequisites

Rep++ installed (includes Rep++ studio and SD Tools). Working knowledge of Rep++. SQL

Server as database.

Create the Technote101 database tables and import the

system

The tables for this system will be added to the repository for the chosen connection.

To create the Technote101 database tables

1. Open SD Tools.

2. Double-click the connection where you want to test the auto-refresh feature. A window with

your connection contents opens.

3. On the File menu, click Open.

4. Choose the Demo/Technotes/Technote101_Srv.sql file under the Rep++ installation folder.

5. On the toolbar, click Execute. Your tables have been added.

To import the Technote101 system in your connection

1. In your connection window, in the right pane, double-click Import a system.

2. Choose the Demo/Technotes/Technote101.sys system under the Rep++ installation folder

and click Open.

The system has been added to your connection. You can close SD Tools.

Import the user-defined attributes

You may already have imported the FWSPA user-defined attributes in your connection through a

previous exercise. If this is the case, skip the import and include them in the section where you

want them, in this case, Technote101.

To import the udas

1. Open the Rep++ User-Defined Attributes Editor.

2. On the Tools menu, click User-Defined Attributes Import.

3. In the User-Defined Attributes Import dialog box, select the SPAUDADEF.uda file located under

the Rep++ installation folder, in the Rep/base subfolder. Click OK.

The set of user-defined attributes that implement the auto-refresh functionality are included in

the FWSPA component, which now appears in the components list.

Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 4

In order to use the auto-refresh feature, you must explicitly specify the Rep++ section(s) where

the FWSPA user-defined attributes will be available.

To include the user-defined attributes in a section

1. In the User-Defined Attributes editor, select the FWSPA component and click the Sections tab

below the definition section.

2. Click Add/Remove.

3. Check the section containing the program where you want to use the auto-refresh and click

OK.

4. Save your modifications.

5. Restart Rep++ studio for the changes to take effect.

Set up the CIECODE and the DEPCODE choice lists

The TECHNOTE101 system contains a Client Rowset in which the CIECODE and DEPCODE are

included, both of which are dynamically built lists. The content of the DEPCODE list depends on

the CIECODE list.

You first need to define the SQL commands to build the CIECODE list and the DEPCODE list, then

modify the settings of the fields within the Rowset, activate the auto-refresh function, and finally

test your program.

To create the CIECODE and DEPCODE choice lists

1. In the SQL commands editor, add an SQL command atom named List_Companies containing

the following code:

SELECT TN101_COMPANY.CIECODE, TN101_COMPANY.CIENAME

INTO :$CODE, :$DESC

FROM TN101_COMPANY

ORDER BY TN101_COMPANY.CIENAME

2. Add another SQL command atom named List_Departments containing the code that will link

its content according the the selected company:

SELECT TN101_DEPARTMENT.DEPCODE, TN101_DEPARTMENT.DEPNAME

INTO :$CODE, :$DESC

FROM TN101_DEPARTMENT

INNER JOIN TN101_COMPANYDEPARTMENT ON DEPCODEFK = DEPCODE

WHERE CIECODEFK= :$AUTO.CIECODE

ORDER BY TN101_DEPARTMENT.DEPNAME

3. Click the Fields node in the Repository Components tree.

4. Open the CIECODE field and change the following attributes:

o Control type: Combo box

o SQL command for list: List_Companies

5. Save your modifications.

6. Open the DEPCODE field and change the following attributes:

o Control type: Combo box

o SQL command for list: List_Departments

7. Save your modifications.

Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 5

To modify the Rowset settings and activate the auto-refresh feature

1. Click the Rowsets node in the Repository Components tree.

2. Open the Client Rowset.

3. Select the CIECODE field from the list.

4. In the Options page, under Join/Choice list options, check Choice list by SQL cmd.

5. Select the DEPCODE field from the list.

6. Click the User-Defined Attributes tab below the fields list:

o Click Yes next to the Dynamic choice list attribute. (You can do this step

programmatically, as explained below.)

7. Save your Rowset.

You can now create a Rep++ SPA application to test the auto-refresh functionality of the

Department field (see Create a Rep++ SPA application to test your functionality at the end).

Notice the variation in the department listing for each company.

Programmatically activate the auto-refresh function

Alternately, you can replace steps 6 above by setting the IsAutoRefresh property of the DEPCODE

field.

To programmatically activate the auto-refresh function

1. In the Visual Studio® Solution Explorer, expand the nodes

ProjectName\Scripts\SpaModels\ClientTransaction and open the RTCClientTransaction.ts file.

2. Locate the ccAfterLoad method and add the line in bold:

public ccAfterLoad(): void {

 super.ccAfterLoad();

 this.rsClient.rsDefClient.fldDefDEPCODE.isChoiceListAutoRefresh = true;

}

3. Save you modification.

4. Rebuild and run.

Technical Note 101 Implementing an auto-refresh choice list

© Consyst SQL Inc. All rights reserved. ● 6

Create a Rep++ SPA application to test your

functionality

To test your new functionality, create a Rep++ SPA application using the Rep++ wizards.

To create a Rep++ SPA application using the Rep++ wizard

1. In Visual Studio®, create a standard ASP.NET Web Application (not Rep++).

2. In the New ASP.NET Project window, select the Rep++ MVC template.

3. In the Rep++ wizard's Connect to the Rep++ repository page, select the connection, system

and program for your technote.

4. In the Select Rep++ repository components page, select the ClientTransaction and

ClientSelectTransaction RowsetTrees for the transaction and selection buffer, respectively.

5. In the Select n-tier options page, leave the default values.

6. In the Specify generation information for typed instances page, leave the default values.

7. In the Specify generation information for POCO entities page, clear Generate POCO entities.

8. In the Select template page, select MVC SPA using Angle Template.

9. In the Select layout options leave the default values.

10. In the Select replacement mode page, click Finish to create the application.

11. In the Search for TypeScript Typings message box, click No.

