
Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 1

Technical Note 103

Triggering an automatic choice

list rebuild in Rep++ single-

page applications

Overview

In a Web context, it is necessary to maintain a pool of already initialized Rep++ Application

objects in order to minimize delays. Dynamic choice lists are however built when an Application

object is initialized. This means choice lists for existing objects become outdated when changes

are made to the tables from which the choice lists are built.

The Application objects must therefore be made aware that a change occurred and that their

choice lists must be rebuilt when they are retrieved from the pool.

This article will demonstrate how to refresh dynamically built choice lists in a Rep++ single-page

application (SPA).

Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 2

Triggering an automatic choice list

rebuild in Rep++ single-page

applications

In a Web context, it is necessary to maintain a pool of already initialized Rep++ Application

objects in order to minimize delays. Dynamic choice lists are however built when an Application

object is originally initialized. This means choice lists for existing objects become outdated when

changes are made to the tables from which the choice lists are built.

The Application objects that live in the pool must therefore be made aware that a change

occurred in order to rebuild their choice lists when necessary.

Therefore, to notify existing Application objects, two things need to happen:

• A program that modifies tables from which choice lists are built must be able to indicate that

changes occurred.

• An Application object retrieved from the pool must be able to check if its choice lists are

outdated and perform a refresh accordingly.

The Rep++ framework for SPA transparently associates a ChoiceListUpdater object with each

application it creates. The ChoiceListUpdater class (in the RepPP.Toolkit.SPA namespace) provides

the methods and properties to trigger a refresh of dynamic choice lists: an application that

modifies the content of tables can call a method that outdates choice lists, while an Application

object retrieved from the pool can query whether its choice lists need to be refreshed.

In this article, you will demonstrate that a dynamic choice list is properly refreshed. To that end,

you will create two applications from the same system, one to manage companies, the other to

manage clients. The company management application will call a method that outdates choice

lists every time modifications to the companies are saved. The client management application

contains a dynamically built list of companies; it automatically checks if a rebuild is necessary. You

will start both applications, modify the companies list in the company application, then see how

the list of the client application is refreshed.

Sample system

A sample system designed to demonstrate this capability, Technote103, is included with the

Rep++ installation. The information is found in 2 tables, TN103_CLIENT and TN103_COMPANY.

The tables contain the following columns:

Company table

Ciecode Ciename

Client table

Clientcode ClientFirstname Clientlastname Clienttype Ciecode Clientsalestodate ...

The system also defines 4 RowsetTrees:

Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 3

• ClientTransaction and ClientSelectTransaction, used in the client management application.

• CompanyTransaction and CompanySelectTransaction, used in the company management

application.

You do not need make any modifications to the system: the Rowsets and SQL command have

already been included. The refreshing functionality is done programmatically. It will be tested in

two single-page applications (SPAs).

In summary, you will:

1. Create the technote's database tables and import the system.

2. Create a Rep++ SPA application for the company management application.

3. Integrate the code for refreshing the company list.

4. Create a Rep++ SPA application for the client management application.

5. Test your application.

Prerequisites

Rep++ installed (includes Rep++ studio and SD Tools). Working knowledge of Rep++. SQL

Server as database.

Create the Technote103 database tables and import the

system

The tables for this system will be added to the repository for the chosen connection.

To create the Technote103 database tables

1. Open SD Tools.

2. Double-click the connection where you want to test the feature. A window with your

connection contents opens.

3. On the File menu, click Open.

4. Choose the Demo/Technotes/Technote103_Srv.sql file under the Rep++ installation folder.

5. On the toolbar, click Execute.

To import the Technote103 system in your connection

1. In your open connection window, on the right pane, double-click Import a system.

2. Open the Demo/Technotes/Technote103.sys system under the Rep++ installation folder.

The system has been added to your connection. You can close SD Tools. You may open Rep++

studio to take a look at the components, but no modifications will be made to the system.

Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 4

Create the Rep++ SPA company management

application

To create a Rep++ SPA company management application using the Rep++ wizard

1. In Visual Studio®, create a standard ASP.NET Web Application (not Rep++) named

TN103_Company.

2. In the New ASP.NET Project window, select the Rep++ MVC V8 template.

3. In the Rep++ wizard's Connect to the Rep++ repository page, select the connection, system

and program for technote TN103.

4. In the Select Rep++ repository components page, select the CompanyTransaction and

CompanySelectTransaction RowsetTrees for the transaction and selection buffer, respectively.

5. In the Select n-tier options page, leave the default values.

6. In the Specify generation information for typed instances page, leave the default values.

7. In the Specify generation information for POCO entities page, clear Generate POCO entities.

8. In the Select template page, select MVC SPA using Angle Template.

9. In the Select layout options leave the default values.

10. In the Select replacement mode page, click Finish to create the application.

11. In the Search for TypeScript Typings message box, click No.

Integrate the code for refreshing the company list

It is the programmer's responsibility to indicate that whenever the COMPANY table is modified,

all choice lists that refer it should be rebuilt. To that end, the company management application

will call the SPAController.TouchChoiceList method (in the RepPP.Framework.SPA namespace)

every time modifications to the companies are saved. This method helps other applications

determine if their dynamic choice lists are still valid or outdated.

You'll override the SaveTransactionToDataAccess method of the SPA controller so that when

modifications to the company list are saved, the TouchChoiceList method is called.

To integrate the code for refreshing the company list

1. Open the CompanyTransactionsController.cs file.

2. Add the following directive:

using System.Collections.Generic;

3. Override the SaveTransactionToDataAccess method by adding the following code:

protected override int SaveTransactionToDataAccess(RowsetTree rstTrans,

 bool bAllLines, Dictionary<string, string> userParameters) {

 int retVal;

 retVal = base.SaveTransactionToDataAccess(rstTrans,

 bAllLines,

 userParameters);

 TouchChoiceList();

 return retVal;

}

4. Build and run your application.

Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 5

Create the Rep++ SPA client management application

To create a Rep++ SPA client management application using the Rep++ wizard

1. In Visual Studio®, create a standard ASP.NET Web Application (not Rep++) named

TN103_Client.

2. Follow the steps above, but in the Rep++ wizard's Connect to the Rep++ repository page, use

the ClientTransaction and ClientSelectTransaction RowsetTrees.

3. Build and run your application.

The ChoiceListUpdater object in the client management application seamlessly determines if a

refresh is required, and if so, rebuilds the choice lists. No particular code is required here, it is

inherently implemented by the framework.

Test the feature

To test the feature

1. In the TN103_Client application, open the company list and look at its content.

2. In the TN103_Company application, modify the company list by adding, deleting or changing

a company.

3. In the TN103_Client application, click the refresh button of the browser, open the company

list on any client, and see that the content has changed accordingly.

Figure 1. Adding a new company to the TN103_Company application.

Technical Note 103 Triggering an automatic choice list rebuild in Rep++ single-page applications

© Consyst SQL Inc. All rights reserved. ● 6

Figure 2. After a refresh of the TN103_Client application.

