Technical Note Executing SQL Server Stored Procedures with Rep++

Technical Note

Executing SQL Server Stored
Procedures with Rep++

Overview

A stored procedure is a subroutine (or procedure) that is physically stored within a database. It is
modular and runs directly on the database engine, which is generally faster at processing
database requests.

The exact implementation of stored procedures varies from one database system to another.
Most major database vendors support them in some form. They are usually written in a
proprietary database language like T-SQL for Microsoft SQL Server, PL/SQL for Oracle database or
PL/PgSQL for PostgreSQL.

This article describes how to execute SQL Server stored procedures with Rep++ and how to get
scalar or result set return values.

© Consyst SQL Inc. All rights reserved. o 1




Technical Note Executing SQL Server Stored Procedures with Rep++

Executing SQL Server Stored
Procedures with Rep++

Prerequisites

e Rep++ installed, along with the DEMOV?2 system.

e SQL Server as database.

e Microsoft SQL Server Management Studio installed and nowledge of how to create stored
procedures in that environment.

Executing stored procedures that do not return any value

In this section, you will create a simple stored procedure that attempts to create a new client.
Then, you will write the code that uses Rep++ to call your stored procedure. If the client already
exists, you will display a message box containing the returned error message.

1. Open Microsoft SQL Server Management Studio.
2. In the Object Explorer, open the Databases node, then the DEMO node (or the one containing
the DEMOV?2 data), and create the CreateClient stored procedure as described below.

CREATE procedure CreateClient (

@ClientFirstName varchar (40),
@ClientLastName varchar (40)
)
as
declare @Code varchar (16)

if len(@ClientFirstName) > 4

Set @Code = substring(@ClientFirstName, 1, 4)
else

Set @Code = @ClientFirstName

if len(@ClientLastName) > 4

Set @Code = upper (@Code + substring(@ClientLastName, 1, 4))
else

Set @Code = upper (@Code + @ClientLastName)

insert CT Client (ClientCode,
ClientFirstName,
ClientLastName,
ClientType,
ClientSalesToDate,
CreationDate,
ModificationDate)
values (Q@Code,
@ClientFirstName,
@ClientLastName,
6,
0,
getdate (),
getdate())

© Consyst SQL Inc. All rights reserved. °?



Technical Note Executing SQL Server Stored Procedures with Rep++

GO

3. Create a new Windows® Forms application project.

4. Drop a RepPPInfo component on the default form and set its connection information.
5. Add a button to the default form and handle its Click event to call the CreateClient stored
procedure.
private void buttonl Click (object sender, EventArgs e) {
RepPP.Application app;
RepPP.Connection connection;
RepPP.SglCommand sqglCmd;
RepPP.ErrorCode errCodeResult;
string strSglCmd;
string strMessage;
bool bSuccess = false;
using (app = RepPP.Application.CreateFromRes ()) {

conn
strS

sqlC
sglC
sqlC
try
er
if

}

}ofi
if
}

}

}

ection = app.DataConnection;
glCmd = @"execute CreateClient @ClientFirstName=:P1,
@ClientLastName=:P2";

md = connection.SglCommands.Open (strSglCmd) ;
md.SetParameterValue ("P1", "Santa", RepPP.FieldType.sdFieldString);
md.SetParameterValue ("P2", "Claus", RepPP.FieldType.sdFieldString) ;
{
rCodeResult = (RepPP.ErrorCode)sglCmd.Execute();

(errCodeResult != RepPP.ErrorCode.sdNoErr) ({
strMessage = "Cannot execute the stored procedure";
strMessage += "\nRep++ Error Code: " + errCodeResult;
strMessage += "\nDB Error Code: " + connection.ErrorCode;
strMessage += "\nDB Error Message: " + connection.ErrorMessage;
MessageBox.Show (strMessage) ;
else {
MessageBox.Show ("The stored procedure executed successfully!");
bSuccess = true;
nally {

(bSuccess) {

connection.Commit () ;
else {
connection.Rollback() ;

6. Build your project and run the application.

The first ti

me you click the button, the client will be created successfully. The second time,

however, you will get an error message stating that the client exists already!

Executing stored procedures that return scalar output
parameters

You will now write a simple stored procedure that creates a new address for a given client and
returns the auto-generated ID of the newly added address. Then, you will write the code that uses

Rep++ to

call your stored procedure and retrieve the value of the address ID.

1. Create the CreateAddress stored procedure.

© Consyst SQL Inc. All rights reserved. e 3



Technical Note

CREATE procedure CreateAddress (

(
(
(
(

Executing SQL Server Stored Procedures with Rep++

16),
80),
40),
6) .

OouT

Insert CT Address (ClientCodeFK, Address Linel, City, PostalCode)

@AddressLinel, @City, @PostalCode)

@ClientCode varchar
@AddressLinel varchar
@City varchar
@PostalCode varchar
@AddressCode int
)
as
begin
values (@ClientCode,
-— Get Autoincrement Value
Set @AddressCode = SCOPE IDENTITY ()
end
GO

2. Add a second button to the default form and handle its Click event to call the CreateAddress

stored procedure.

private void button2 Click (object sender, EventArgs e) {

RepPP.Application
RepPP.Connection
RepPP.SglCommand
RepPP.ErrorCode
string

string

bool

app;
connection;
sqglCmd;

errCodeResult;

strSglCmd;
strMessage;
bSuccess

= false;

using (app = RepPP.Application.CreateFromRes ()) {
connection = app.DataConnection;

strSglCmd = @"execute CreateAddress @ClientCode=:P1,
@AddressLinel=:P2,
@City=:P3,
@PostalCode=:P4,
@AddressCode=:P5 OUTPUT";
sglCmd = connection.SglCommands.Open (strSqlCmd) ;
sglCmd.SetParameterValue ("P1", "SANTCLAU", RepPP.FieldType.sdFieldString) ;
sglCmd.SetParameterValue ("P2","Christmas St.", RepPP.FieldType.sdFieldString) ;
sglCmd.SetParameterValue ("P3", "North Pole", RepPP.FieldType.sdFieldString) ;
sgqlCmd.SetParameterValue ("P4", "HOHOHO", RepPP.FieldType.sdFieldString) ;
sglCmd.SetParameterValue ("P5", int.MaxValue.ToString(),
RepPP.FieldType.sdFieldNumeric) ;
try {
errCodeResult = (RepPP.ErrorCode)sglCmd.Execute () ;
if (errCodeResult != RepPP.ErrorCode.sdNoErr) ({
strMessage = "Cannot execute the stored procedure";
strMessage += "\nRep++ Error Code: " + errCodeResult;
strMessage += "\nDB Error Code: " + connection.ErrorCode;
strMessage += "\nDB Error Message: " + connection.ErrorMessage;
MessageBox.Show (strMessage) ;
} else {
strMessage = "The stored procedure exected successfully.";

strMessage +=

bSuccess =
}
} finally {
if (bSuccess) {

"\nNew address code: " + sglCmd.GetParameterValue ("P5");
MessageBox.Show (strMessage) ;

true;

connection.Commit () ;

} else {

connection.Rollback() ;

}

© Consyst SQL Inc. All rights reserved.



Technical Note Executing SQL Server Stored Procedures with Rep++

In order to get the value of a stored procedure's scalar output parameter, you must
allocate a buffer that is sufficient for its type. For instance:

o If the return value is an integer, your buffer must be able to hold the string
representation of the largest integer (as in our code example).

o If the return value is a string (e.g. varchar(40)), your buffer must be able to
hold the maximum number of characters allowed (i.e. 40).

Use the SglCommand.SetParameterValue method to allocate a sufficient buffer for a
scalar output parameter.

3. Build your project and run the application.

Every time you execute the CreateAddress stored procedure, an address is created and the auto-
generated ID of the address is displayed.

Executing stored procedures that return result sets

In this section, you will create a simple stored procedure that returns the client codes of all the
clients. Then, you will write the code that uses Rep++ to call your stored procedure and retrieve
the result set.

1. Create the GetClients stored procedure.

CREATE PROCEDURE GetClients
AS
BEGIN
SELECT CLIENTCODE
FROM CT CLIENT;
END
GO

2. Add a third button to the default form and handle its Click event to call the GetClients stored
procedure and fetch the client codes as indicated.

private void button3 Click (object sender, EventArgs e) {
RepPP.Application app;

RepPP.SglCursor sglCur = null;
RepPP.ErrorCode eErr;
string strMessage;

using (app = RepPP.Application.CreateFromRes ()) {
eErr = (RepPP.ErrorCode)app.DataConnection.Execute ("execute GetClients", out sglCur);
if (eErr == RepPP.ErrorCode.sdNoErr) {
strMessage = "Clients:";
while (sglCur.Fetch() == (int)RepPP.ErrorCode.sdNoErr) {
strMessage += "\n" + sglCur.GetColumnValue ("CLIENTCODE") ;
}
sglCur.Close() ;
MessageBox.Show (strMessage) ;

© Consyst SQL Inc. All rights reserved. e 5



Technical Note Executing SQL Server Stored Procedures with Rep++

3. Build your project and run the application.

Every time you execute the GetClients stored procedure, a message box containing the list of
client codes is displayed.

© Consyst SQL Inc. All rights reserved.



