
Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 1

Technical Note

Normalizing Repository Tables

with the Rep++ Normalization

Wizard

Overview

One of the main advantages of Rep++ is the centralization of the metadata definitions in the

Rep++ repository. If an organization uses a database column called SIN (social insurance number)

in the Rep++ repository, then this same, unique definition will be reused everywhere the database

column is used. Another main advantage of Rep++ is the way it completely automates the

management of complex father-child relationships.

In order to achieve the centralization of the metadata in the repository and assume the proper

management of relationships, Rep++ requires a normalized set of tables. Unfortunately, existing

databases are seldom ideal or normalized.

In order to gap the bridge between a non-normalized database and the requirements of the

repository, Rep++ integrated a new tool, the Normalization Wizard, whose goal is to help you

sort out the duplications or incoherences that often arise in existing databases so that they are

taken into account into Rep++.

This document describes the specific problems that are addressed by the normalization wizard

and how it can resolve them simply and intuitively.

The products and software mentioned in this document are trademarks, registered trademarks or trade names of their

respective holders.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 2

Normalizing Repository Tables with

the Rep++ Normalization Wizard

Normalization issues

Rep++ relies on a certain level of normalization from its set of tables in order to efficiently

manage the metadata and their relationship. In particular, Rep++ does not allow for columns with

same name but different types: a column name must represent one and only one entity, and all

columns sharing the same name in the database should have the same definition.

The initial metadata of a column is often imported from an existing source database using the

Rep++ Update wizard. If the source database is normalized, the import creates all the equivalent

tables and columns in the repository. Unfortunately, source databases, built and modified over

time, do not always attain the level of normalization expected by Rep++. For instance, they may

contain duplications or inconsistencies that make them vulnerable to problems such as data

integrity. To try to correct the database itself would generally prove very difficult to achieve, if

even possible.

This is where the Rep++ normalization wizard steps in: it identifies the columns that are

duplicated or inconsistent, and helps you map them to appropriate columns or to new columns of

the repository. You reach the appropriate level of normalization for Rep++ without any changes

to the database itself: Rep++ manages the rest with no further intervention.

Problems addressed by the normalization wizard

There are two types of issues that the normalization wizard addresses:

1. Columns with same name but different definitions. The existing database contains several

columns with the same name but the column definitions are different.

2. Columns with differing names that represent the same entity. The existing database

contains columns with different names that represent the same thing. This leads to 2

problems:

o Primary key and foreign key columns can have different names in database tables;

o Useless duplication of information.

Case 1: Columns with same name but different definitions

The example below describes the case where a column name has more than one definition in

different tables.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 3

If you try to import the definitions of the tables Employee and TaxPayer using the Rep++ Update

wizard, you will get the following error message.

In this example, the SIN column actually represents the same entity but they are defined

differently, one as a string type, the other as an integer type. Rep++ requires that the name of a

column in the database be unique and represent a single entity in the repository.

Case 2: Columns with differing names for primary and foreign keys

The main problem arises when the database schema does not respect the naming rule that

primary keys and foreign keys should have the same name. For instance, in the following tables,

the primary key of the Employee table (EmployeeID) is different than the foreign key in the

ExpenseReport table (EmployeeIdFK) even though they represent the same thing.

The definition of a Rep++ RowsetTreeDef that represents the employees and their expense report

is shown below.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 4

When you attempt to save this Rep++ RowsetTreeDef, you will get the following warning
complaining that the EmployeeID column could not be found in the ExpenseReport table.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 5

You need to resolve this mismatch in order for Rep++ to manage the relation correctly.

As for the useless duplication of metadata, sometimes columns with different names in different

tables really could be described by the same entity in the repository. For instance, columns

Description, Desc, Memo, Notes that share the same definition throughout a database could

more simply be described by a single entity in the repository. This simplification would decrease

the number of useless definitions, thereby reducing the number of entities required to describe a

system.

Correcting the problems

There are a limited number of approaches to resolve those issues. One is to modify the database

itself, which can be, for all practical purposes, at least very complex if not impossible. The other is

to make the Rep++ repository aware of those issues, so that they can be taken into account

automatically. This can be done manually or using the normalization wizard.

Modifying the source database

In the case of the multiple definitions problem, the solution would be to modify the database so

that all columns with the same name must have the same definition, or to change the names of

unrelated columns that have the same name. In the case of differing names for primary and

foreign keys, you would need to modify the schema so that a primary key column and all its

referencing columns have the same name.

Modifying the database is however quite complex and risky because it is sometimes difficult to

assess the impacts of a change on an already existing database, especially when it involves several

dependent systems.

Mapping columns manually

Another solution would be to make the changes in the Rep++ repository itself and let Rep++

manage them. With Rep++, you indirectly deal with this kind of situation by mapping a logical

column in the repository to a column’s physical name that is used when generating SQL

commands that interact with the database management system. You map a column name in the

repository to a column name in the database in the tables editor.

Case of same name but multiple definitions

In the case of multiple definitions problem, you need to create a column with a unique name to

use with one of the column definitions.

M A P P I N G A U N I Q U E C O L U M N N A M E T O A D A T A B A S E C O L U M N

You need to choose which one of the column definitions you want to rename in the repository.

To map a unique repository column name to a database column

1. Create a new column in the repository with a type that corresponds to the type of the chosen

column causing the problem in the database.

2. In the tables editor, select the table that will contain the new column.

3. Click the Column tab to display the list of columns for the table.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 6

4. Locate the chosen database column under Physical Name, then under Column, select your

new column from the list.

In the example for the SIN column described before, you would create a new column with a

unique name, for instance a TAX_PAYER_SIN column of type INT for the TaxPayer table. You

would then associate this repository column (logical name) to the SIN database column (physical

name) in the TaxPayer table. When Rep++ sees the SIN database column, it will use instead the

TAX_PAYER_SIN repository column, and vice-versa.

Case of columns with differing names for primary and foreign keys

In the case of columns that differ in name for primary and foreign keys, you can assign the name

of the primary key column to the logical name of the foreign key column in the descendant

tables.

M A P P I N G A F O R E I G N K E Y C O L U M N T O I T S F A T H E R P R I M A R Y K E Y C O L U M N

To map a foreign key to its father primary key column

1. In the tables editor, select the child table that contains the foreign key to change.

2. Click the Column tab to display the list of columns for the table.

3. Locate the foreign key of the table under Physical Name, then select the name of the primary

key of its father table from the list under Column.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 7

In the database, the foreign key column name will remain the same, but when Rep++ sees the

foreign key, it will use instead the logical name corresponding to the primary key of its father

table.

Using the Normalization wizard

The manual method for mapping new or existing repository columns to database columns is a

simple way to correct the source database’s duplications and inconsistencies. Unfortunately, it

does not give you a global view of the modifications you need to do. In both cases, you can

achieve the same result using the Normalization wizard, which provides a user-friendly interface

that will display a global view of what needs to be done and help you quickly perform the

necessary mappings.

The normalization wizard

The normalization wizard was created to facilitate the correction of issues such as multiple

definitions and differing names for primary/foreign keys. By selecting a table or set of tables to

analyze, the wizard presents, in an intuitive user interface, a comparative view of the repository

and the database tables and columns. It displays, in one, easy-to-understand window, the

columns attached to the tables as stored in the repository and the columns attached to the tables

in the database. The wizard highlights inconsistencies so that you can right away make the

necessary modifications.

When to use the normalization wizard

You use the Normalization wizard when you start a new information system using Rep++ from an

existing database. You would first run the Update wizard to import the tables of the database into

the repository. If the Update wizard reports errors such as duplicate columns, then you use the

Normalization wizard to help you make the necessary corrections.

Remember that the normalization wizard does not change in any way your database schema.

Instead, it helps you create and/or map columns of the repository (the logical columns) to existing

physical columns in the database, thereby achieving the required level of normalization for

Rep++.

The normalization wizard environment

The normalization wizard environment is shown below.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 8

Repository Columns

On the left, the Repository Columns displays the list of columns that are associated with one of

the analyzed tables, along with their type. The following icons describe the state of the column.

The column has been created in memory but has not been saved.

The column has not changed since it was loaded.

To show all columns, click Show columns on the toolbar, then Show all columns.

Repository View and Database View

On the right, the Repository View and the Database View show a comparative view of the

repository tables and their database counterparts. By default, this view includes all the analyzed

tables. To display only tables in error, click Show tables on the toolbar, then Only tables with

errors.

Note

If a table exists either in the repository or the database but not in both, it will only be

displayed in the view corresponding to its location.

Table controls

The repository and database views use a number of table controls to represent their tables. A

table control displays a repository or database table’s columns. Moving the mouse over a column

displays a tooltip providing additional information regarding the column’s name, physical name

and type. Selecting a repository column selects its corresponding database column (and vice-

versa), and the types of both versions are displayed in the main status bar.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 9

The state of a column is expressed as follows:

• If there is a difference between the type of the database and repository versions of the

column, the column name turns into italics.

• If the column’s logical and physical names are different, it is prefixed with an asterisk (*) in the

repository view.

The following icons are used to describe the state of a column.

The table column has not changed since it was loaded.

The table column has changed in memory but has not been saved.

The database table column has the same name as another column but a different
definition.

The figure below shows you an example of how the presence of a column name with different

definitions would appear in the wizard. The status bar indicates one error. It also shows that the

SIN column of the TaxPayer table in the repository has a type that is different from its counterpart

in the database.

Table controls handle drag-and-drop. You can rename a column by dragging it from one table

control to another or from the Repository Columns. Table controls also provide a context

sensitive menu that enables you to:

• Rename a column.

• Undo a modification (if applicable).

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 10

Unused columns window

When you save your changes, the normalization wizard checks if there are any repository columns

that are no longer in use. If there are unused repository columns, the wizard opens the Delete

unused replository columns dialog box where you can select the columns to delete.

Recall

All changes made by the normalization wizard are applied to the metadata of the

repository only. Your database schema is not modified in anyway.

Using the normalization wizard

Starting the normalization wizard

You normally run the Normalization wizard after you use the Update wizard to update the

repository tables.

S T A R T I N G T H E N O R M A L I Z A T I O N W I Z A R D

To start the Normalization wizard

1. On the Tools menu of the Rep++ repository editor, click Wizards, then Normalization

wizard.

2. In the Select tables dialog box, select the tables to be analyzed and displayed. Click OK.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 11

The Data Dictionary Normalization Wizard window will open.

Solving the case of multiple definitions

When there are multiple definitions for a database column name, you need to associate a type-

compatible column of the repository to the database column. To do so, you can use an already

existing column or create a new column.

When a type-compatible column exists

If your system already contains a column with a compatible type, use that column.

U S I N G A N E X I S T I N G T Y P E - C O M P A T I B L E R E P O S I T O R Y C O L U M N T O M A P T O A D A T A B A S E

C O L U M N D E F I N E D M O R E T H A N O N C E

To map a repository column

Do one or the other:

• Use drag and drop: Drag the existing type-compatible column over the column in the

Repository View. You can drag a column either from the list of columns or from a table

definition.

• Use the contex menu.

a. Right-click on the repository column and click Associate a repository column.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 12

b. In the Associate a column dialog box, click Associate an existing column and choose

one of the proposed columns. Click OK.

c. Save your modifications.

The chosen column name will now appear in the Repository View.

When no type-compatible column exists

If no column has a compatible type, the wizard provides a context-sensitive menu that allows you

to easily create a compatible column by simply providing the column name.

C R E A T I N G A N E W T Y P E - C O M P A T I B L E C O L U M N T O M A P T O A D A T A B A S E C O L U M N

D E F I N E D M O R E T H A N O N C E

To create a new column in the normalization wizard

1. Right-click on the column in error and select Associate a repository column.

2. In the Associate a column dialog box, click Create and associate a new column and enter the

name of the new column. Click OK.

3. Save your modifications.

The chosen column name will now appear in the Repository View.

Solving the case of columns with differing names for primary and foreign keys

Fixing the different primary key and foreign key column names using the normalization wizard

only involves selecting the appropriate column.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 13

A S S O C I A T I N G A F O R E I G N K E Y C O L U M N T O I T S F A T H E R K E Y I N T H E R E P O S I T O R Y

You can use the drag-and-drop or the context menu.

To map a repository column

Do one or the other:

• Use drag and drop: Drag the primary key column either from the Repository Columns or

from the parent table, and drop it on the foreign key column in the child table.

• Use the context menu:

a. Right-click on the foreign key column and select Associate a repository column.

b. In the Associate a column dialog box, click Associate an existing column and select

the primary key column of the parent table. Click OK.

c. Save your modifications.

The selected column name appears in the Repository View of the wizard. The tooltip indicates

that the EmployeeID column is now mapped to the EmployeeIdFK.

Technical Note Normalizing Repository Tables with the Rep++ Normalization Wizard

© Consyst SQL Inc. All rights reserved. ● 14

Once you are done with the wizard, Rep++ will take charge of using the appropriate database

tables mapped with the repository tables. No more intervention on the developer's part is

required unless the source database is modified (column modified or added), in which case you

would run the update wizard followed by the normalization wizard to detect if new mappings are

necessary.

